

Resource Container, **VTT Concept for nutrients**

Jätevesien ravinteet kiertoon -webinar

Hanna Kyllönen, Juha Heikkinen, Eliisa Järvelä and Antti Grönroos 21.10.2020 VTT – beyond the obvious

1

Resource container – project 1

- Target: New solutions for wastewater treatment and nutrient recovery, and for better usability of the recycled products
- Actions: Concept development, pre-piloting at Parainen WWTP, and the first TEA calculations
- Financing: Raki 2, YM and VTT
- Running time: Dec 1st, 2016 Dec 31st 2017
- Cooperation: Sofi Filtration, Aquaminerals, OWACO, Kemira, Dewaco, Watman, BSAG, Parainen, Pöyry, Turku AMK
- Result: 99% reduction/recovery for suspended solids, COD, phosphorous, and 87% for nitrogen

21.10.2020 VTT – beyond the obvious

Resource container – project 2

- Target: Plug-and-play resource container to be implemented in various scales locally or as seasonal solutions
- Actions: Two pilots of water purification and products recovery from wastewater using resource container with physico-chemical units applicable for varying wastewater loads and temperatures
 - Chipsters Food and PSSry
- Financing: Business Finland, VTT, companies
- Running time: Apr 2nd, 2018 Mar 31st, 2020
- Cooperation: Watman, Sarlin, Aquaminerals, Chipsters Food, Pidä Saaristo Siistinä ry, Nordkalk, Bluet, Ecomation
 21.10.2020 VTT - beyond the obvious

Nutrients recovery technologies studied in Resource container -projects

- Phosporous
 - Precipitation using calcium products
 - Nanofiltration, reverse osmosis
 - Evaporation
 - Adsorption using adsorbent and GAC
- Nitrogen with and without pH adjustment
 - Evaporation, stripping
 - Nanofiltration, reverse osmosis
 - Membrane contactor
 - Adsorption using adsorbent and GAC

21.10.2020 VTT – beyond the obvious

Resource Container = Mobile pilot equipment

- Belt, e.g. 350 µm, in Salsnes SF1000 filter
- Cartridge filter SPE-5-9³/₄BB, *e.g.* with 5 µm pore size (nominal rating)
- RO membrane elements, e.g. LG BW 4040 ES

21/10/2020 VTT – beyond the obvious

Main elements of Resource Container

Suspended solids removal

- Septic tank wastewater
 - Dry solids content ~8 g/l (8 kg/m³)
- Flocculant SNF Floerger FO 4800 SH
 - Dose increased until successful floc formation
 - Optimal dosage about 90 l/m³ of 0.1% polymer, i.e. ~11 kg/t_{DS}
- Belt 350 µm performed well if flocculation was successful
- Cartridge filters functioned depending on success at belt

In 20°C.

Recovery of nitrogen by membrane contactor

- 90 I feed solution: BWRO concentrate
- 9 kg adsorption solution 5.5 w-% H₂SO₄
- Membrane contactor (MC): 3M[™] Liqui-Cel[™] MM-1x5.5 Series
 - X50 fiber, 0.5 l/min flow rate (30 l/h)

21/10/2020 VTT – beyond the obvious

7

Pre-treatment to MC

- PH was increased to improve ammonia gas permeation through the membrane
- Increase of pH precipitated phosphate from the feed to be recovered
- Precipitation of phosphate was carried out using 20% lime-water slurry
 - 5 I lime slurry per 100 I concentrate
 - pH increased > 12
- Some ammonia vaporized during phosphate precipitation since pH was too high
- Feed to MC was filtered using cartridge MF

	pH/ temperature	Suspend solids	NH ₄ +	PO ₄ -3
Concentrate	7.7 / 15°C	0.2 g/l	2420 mg/l	6.41 mg/l
After lime addition	12.3/ 16.5C	1.6 g/l		
After 2 hours settling	12.2 /16.8C	0.3 g/l	1692 mg/l	
1 µm cartridge filtrate (feed to MC)	12.4	0.1 g/l	1690 mg/l	0.04 mg/l

21/10/2020 VTT – beyond the obvious

MC pilot

- 82 % of ammonia was removed from feed to acid
- When NH₄ content of feed was < 500 mg/l, removal of ammonia was slow
- pH of acid increased and conductivity of feed decreased
 - Ammonia neutralized acid: 2NH₃ + H₂SO₄ ->(NH₄)₂SO₄
 - Removing ammonia from feed decreased it's ion content
- Acid weight increase was minor (1-3,5 g/h)
 - No significant water transportation
 - Ammonia content increased the weight mostly
- Minor fouling was seen

VTT

Conclusions

- 1. PSS ry wastewater
- 2. Belt filtrate
- 3. Cartridge filtrate
- 4. RO concentrate
- 5. RO permeate

- Concept worked well for nitrogen and phosphorous recovery as well as pure water production
 - Suspended solids removal was important step for successful nutrients recovery
 - Phosphate precipitated well and could be recovered when pH was increased for ammonia recovery
 - 12 g/l ammonia solution, 44 g/l (NH₄)₂SO₄, could be obtained
 - 82 % of ammonia could be absorbed from feed to acid by membrane contactor

21/10/2020 VTT - beyond the obvious

Contacts: hanna.kyllönen@vtt.fi tai antti.gronroos@vtt.fi

Hanna Kyllönen Hanna.kyllonen@vtt.fi +358 40 5284521 @VTTFinland

www.vtt.fi

21/10/2020